From Planck Data to Planck Era: Observational Tests of Holographic Cosmology.

نویسندگان

  • Niayesh Afshordi
  • Claudio Corianò
  • Luigi Delle Rose
  • Elizabeth Gould
  • Kostas Skenderis
چکیده

We test a class of holographic models for the very early Universe against cosmological observations and find that they are competitive to the standard cold dark matter model with a cosmological constant (ΛCDM) of cosmology. These models are based on three-dimensional perturbative superrenormalizable quantum field theory (QFT), and, while they predict a different power spectrum from the standard power law used in ΛCDM, they still provide an excellent fit to the data (within their regime of validity). By comparing the Bayesian evidence for the models, we find that ΛCDM does a better job globally, while the holographic models provide a (marginally) better fit to the data without very low multipoles (i.e., l≲30), where the QFT becomes nonperturbative. Observations can be used to exclude some QFT models, while we also find models satisfying all phenomenological constraints: The data rule out the dual theory being a Yang-Mills theory coupled to fermions only but allow for a Yang-Mills theory coupled to nonminimal scalars with quartic interactions. Lattice simulations of 3D QFTs can provide nonperturbative predictions for large-angle statistics of the cosmic microwave background and potentially explain its apparent anomalies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fischler-Susskind holographic cosmology revisited

When Fischler and Susskind proposed a holographic prescription based on the Particle Horizon, they found that spatially closed cosmological models do not verify it due to the apparently unavoidable recontraction of the Particle Horizon area. In this article, after a short review of their original work, we expose graphically and analytically that spatially closed cosmological models can avoid th...

متن کامل

A Dynamic Dark Information Energy Consistent with Planck Data

The 2013 cosmology results from the European Space Agency Planck spacecraft provide new limits to the dark energy equation of state parameter. Here we show that Holographic Dark Information Energy (HDIE), a dynamic dark energy model, achieves an optimal fit to the published datasets where Planck data is combined with other astrophysical measurements. HDIE uses Landauer’s principle to account fo...

متن کامل

A Possible Solution to the Horizon Problem: the Mad Era for Massless Scalar Theories of Gravity

Extensions of Einstein gravity which allow the gravitational constant G to change with time as the universe evolves may provide a resolution to the horizon problem without invoking a period of vacuum domination and without the subsequent entropy violation. In a cosmology for which the gravitational constant is not in fact constant, the universe may be older at a given temperature than in a stan...

متن کامل

Planck 2015 results . XIII . Cosmological parameters

This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standa...

متن کامل

Numerical Studies and Simulation of the Lower Hybrid Waves Current Drive by using Fokker – Planck Equation in NSST and HT-7 Tokamaks

Recent experiments on the spherical tokamak have discovered the conditions to create a powerful plasma and ensure easy shaping and amplification of stability, high bootstrap current and confinement energy. The spherical tours (ST) fusion energy development path is complementary to the tokamak burning plasma experiment such as NSTX and higher toroidal beta regimes and improves the design of a po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 118 4  شماره 

صفحات  -

تاریخ انتشار 2017